
Migrating Enterprise Applications to the .NET
Framework

by S.K. Dutta

Abstract: This article describes the challenges faced during migration of an enterprise
application product from ASP to the Microsoft .Net platform. Active Server Pages (ASP)
has been a very popular means to develop web-based applications on the Microsoft
platform for the past few years. The popularity of ASP stems from the fact that it is very
simple to learn and use. For complex applications, however, the design patterns offered
by the ASP-based programming made the code difficult to enhance, and as a result,
maintenance became expensive. Microsoft .Net framework seemed to have filled in the
gap by providing a framework that introduces object-oriented discipline in programming
such applications. Also, many components were unavailable in the ASP framework (e.g.
a good file upload component). These had to be purchased from third-party software
vendors resulting in dependence on these components on the enterprise application. In
addition, system services like authentication, encryption, etc. are in-built in the .Net
framework. We will describe here a web-based application portal called OfficeClip and
follow its progress as it is migrated in the .Net framework.

Product History

OfficeClip is a web-based enterprise application portal comprised namely of enterprise-
wide time and expense reporting, project tracking, document management and calendar
management, etc. It was initially designed using ASP at the front end and SQL Server at
the back end. This choice was primarily made by considering the time to market and
extensibility of the back end. Over the next few years, more applications were added to
the OfficeClip suite, and the size of the sources became large (more than 300,000 lines of
code). Enhancement and maintenance started becoming more and more expensive.
Sometime during the middle of 2001, the decision was made to migrate OfficeClip to a
platform that would provide easier maintenance and more room for growth.

Platform Selection

After evaluating various platforms, we narrowed down our choices to two enterprise
platforms to migrate our application to: 1. Java, a matured platform developed by Sun
Microsystems, and 2. .Net, an upcoming platform released by Microsoft (it was beta 2 at
that time). The advantage of Java is that it is a proven platform for enterprise applications
(J2EE standard) and has the ability to run seamlessly on both UNIX and Windows
platforms. On the other hand, the .Net platform was not proven at that point, so we
decided to look into it cautiously. The beta version of the .Net release was stable enough
to convince us of the stability of our application if written in that platform. Also, looking
into various components of the .Net platform, we felt that it addressed the problems we
had with our ASP code. Because of its design philosophy, we understood that we would
have more reuse if we used the .Net platform.

Migrating Applications to the .NET framework S.K. Dutta

 2

Migration Goals

Prior to beginning the migration process, we developed the following list of goals:

1. Provide three levels of customization to the end user, defined as follows:

a. Level 1 - XML based configuration files for configuration of various

application properties.
b. Level 2 - Developer API to modify and extend the interface.
c. Level 3 - Provide presentation layer source code to the client so they will be

able to create or modify the existing presentation layer according to their
needs.

2. Provide clear separation between various layers of the three-tier architecture,
including the creation of a services layer to make it possible to provide and consume
web services.

3. Provide protection of intellectual property rights.

4. Provide integrated security and authentication.

5. Provide the ability to use the product on mobile devices with minimal code changes.

6. Provide the ability to implement OfficeClip in various localized versions.

7. Provide the ability to create custom controls for reuse.

8. Provide the ability to compile code and distribute the executable, as opposed to
distribution of the sources.

Most of the above objectives were met directly by the use of the Microsoft.Net platform.
This framework has tools for creating web services, integrated security and
authentication, support for localization, and has a mobile toolkit. The only thing we found
it did not address very well was the protection of intellectual property.

The Microsoft.Net framework is designed to run on a runtime environment called
Common Language Runtime (CLR). The source code of any program written in this
environment could be viewed by using an intermediate language disassembler (ILDASM)
or many commercially sold decompiler. We decided to provide the source code of the
presentation layer to our clients. The business layer and the data access layer code were
indiscriminate. The licensing code was written in the unmanaged code (native C++ code).
The application programmer interface (API) was provided for the business layer and the
data access layer for flexibility and extensibility.

Migrating Applications to the .NET framework S.K. Dutta

 3

Figure 1: OfficeClip application infrastructure

Migration Strategy

Our initial migration approach was to write a translator to translate the existing code. We
quickly abandoned this strategy, as this would not satisfy many of the goals we had set in
the previous section.

The migration effort started with defining a new architecture of OfficeClip. A three-tier
architecture was designed to support the application. A resource layer was added to
isolate all of the resources required by the application, and a services layer was added to
put all the clients and servers of web services. The entire migration process was divided
into six parts:

1. Separation of the User Interface code while keeping the same user interface
layout. This meant separation of the html from the asp code in the program.
Because the layout was not changed, this was a relatively simple thing to do.

2. Separation of the embedded SQL commands from the code and the creation of a
stored procedure for them.

3. Identification of common functions from the existing system and placing them in
a common utility library.

4. Creation of the data access library to provide encapsulated access to the stored
procedure.

Migrating Applications to the .NET framework S.K. Dutta

 4

5. Identification of all the business structures to create a business layer façade.

6. Identification of all the configuration structures with representation of them using
XML schema.

Figure 2 : OfficeClip Building Blocks

OfficeClip Architecture

The three main layers of the OfficeClip architecture are the presentation layer, business
layer and the data access layer. The user elements are coded in the .aspx files, which only
have the html tags, framework control tags and the user-defined tags (for user controls).
The business layer consists of business façade to access the information from the data
layer. The data access layer contains the libraries to access the database.

OfficeClip uses web services as a primary vehicle to communicate with the outside world.
A services layer encapsulates all the web services created and consumed by OfficeClip.

OfficeClip resources are composed of reports, images, localization resources and xml
files. These are encapsulated in a different layer called the resources layer. OfficeClip
users will be able to modify these resources to change the look, feel and functionality of
the product.

Migrating Applications to the .NET framework S.K. Dutta

 5

Figure 3 : OfficeClip Architecture Layers

The interaction between various layers can be explained by the use of a UML sequence
diagram (see Figure 4). When the user clicks to view all of the reminders in a list, a user
event is generated that uses a delegate to service the event. It first instantiates a
ReminderListObject from the business layer, and then populates this object by making a
call to the data layer. Finally, the business object is removed from the memory and the
delegate instantiates a new object to show the reminder list on the screen.

Migrating Applications to the .NET framework S.K. Dutta

 6

Figure 4: Reminder Sequence Diagram

Customization

The challenge any software product faces is to allow its user to customize it to the
greatest extent possible. This exists even more so in application portals. At one end, we
find shrink-wrapped applications that are inexpensive but difficult to customize. At the
other end we find open systems’ building blocks, where any kind of customization is
possible but at a high cost. The Microsoft.Net environment has made the customization
work a little easier by providing a rich variety of XML-based API, user controls and web
services. There are three OfficeClip customization levels:

1. XML- based Configuration Files (Level 1)
Most of the application parameters are configured in an XML file. These files are
read at runtime and applications are configured according to the entries in these
files. Some of the examples of the use of XML files are:

 Controlling OfficeClip applications.
 Controlling OfficeClip themes.
 Setting up new mobile phones and pagers.
 Creation of new templates for sending e-mails.

Migrating Applications to the .NET framework S.K. Dutta

 7

There are a total of about 30 XML configuration files that can be used to fine-
tune the suite of applications in OfficeClip. These files can be modified by system
administrators who will only need a minimal amount of knowledge on how to edit
XML files. User interfaces to manipulate some of the common XML files are
provided in the OfficeClip Enterprise Manager (OEM), which is a
WhatYouSeeIsWhatYouGet (WYSIWYG) program to configure OfficeClip.

2. Developer API (Level 2)

The business layer and data layer of all OfficeClip applications are open to
developers by the use of an application programmer interface (API). The object-
oriented framework of the Microsoft.Net environment provides leverage to inherit
from the OfficeClip classes to modify them or to take advantage of them to design
new applications.

3. Source Code (Level 3)

The challenge facing users today is that they cannot yet modify the look and feel
of a product by the using the vendor-supplied API. Vendors often use their own
branded look and feel, which may not be suitable for the corporate environment.
At other times, changing the presentation layer is a revenue source for the vendor,
as the source code is not supplied. OfficeClip addresses these concerns by
providing the source code of the presentation layer in the developer toolkit.

Another challenge facing the software manufacturer and the users is that heavy
customization often impedes the ability of upgrading the software. In many
instances, the upgrade may overwrite the file, which is modified by the user.
OfficeClip takes an approach which keeps the users’ changes separated from the
OfficeClip core files. All user changes are made to separate directory structures. A
dictionary maps the user file with the existing files in OfficeClip. At loading time,
the loader loads the dictionary and creates the map of the new resources in the
memory. Thereafter, every access to the customized resources can be
automatically found and directed to the appropriate resource. This frees the users
to make changes to any OfficeClip program file or resource as they see fit, and
also allows OfficeClip to provide patches and subsequent releases to the customer
base without the fear of overwriting and changing files.

Localization

One of the migration goals was to make the software to work in various languages. This
could not be done very efficiently in the current version of OfficeClip due to the cost and
time to implement and maintain such an infrastructure. We wanted an infrastructure that
would not be very intrusive to the existing code and could also be enhanced by adding
new languages without compiling the code.

Migrating Applications to the .NET framework S.K. Dutta

 8

Microsoft.Net provides an environment for localization using satellite assemblies. These
assemblies are created from the XML-based resource files and can be upgraded in the
same way as other resources. In order to use this infrastructure, we simply changed all of
the strings in our programs to a more generic name and created mapping files (one for
each language).

The framework also provided capabilities to assign language to individual UI threads, so
the same application could be run with different languages in different browsers.

One of the challenges that we faced while doing localization was that OfficeClip
applications had about 400 images totaling almost 6MB of data. While these could be put
into resource files and localized, we did not see that as the best option in consideration of
memory space and efficiency. We implemented a mechanism similar to the satellite
assembly and kept images in various local directories. At run time, OfficeClip would go
and extract the appropriate image required to display on the screen. We implemented a
fallback mechanism similar to the satellite assemblies in localization. If the specific
image was not available for the culture specific language (e.g. fr-CA i.e. French for
Canada), then it would fallback to a less-specific culture (e.g. fr i.e. French). If the less
specific culture is not available, it would fallback to the OfficeClip default local culture
(which is English US).

Mobile Access

The use of the Mobile API in the Microsoft.Net framework made it easy to create a
mobile presentation layer. The other layers did not need any modifications. The Mobile
API in the framework includes definitions for various devices, which takes the
customization work off of the developer’s shoulder. The initial mobile interface (a total
of 10 screens) took about seven man-days to complete.

Results

At the conclusion of the project, we were able satisfy all of the migration goals we
defined. In addition, the following are some interesting observations from our experience:

1. The code size increased by 50 % (450,000); however, the maintainable code
decreased by about 50 %. This is because the application code templates were
used to generate code in various layers.

2. The entire migration took about 1.5 man years, which should be considered to be
a small number, taking into account the redesign of the entire code base.

3. Documentation of the code became much easier by following the disciplined
approach of the Microsoft.Net framework and the use of the supplied tools. The
resulting documentation could be created in XML, which could be easily
translated into any format.

Migrating Applications to the .NET framework S.K. Dutta

 9

4. One of the major advantages gained from this effort was the code reusability.
Heavy use of web controls made it possible to reduce development time on the
OfficeClip applications.

5. Deployment became simpler, as the only outstanding item is whether the
Microsoft.Net runtime is available in the target system. The installation and
upgrade could easily be done by copying files to appropriate directories. There
would be no need for installing and configuring DLLs.

